Bifurcation of Limit Cycles in a Fourth-Order Near-Hamiltonian System

نویسندگان

  • Maoan Han
  • Desheng Shang
  • Wang Zheng
  • Pei Yu
چکیده

This paper is concerned with bifurcation of limit cycles in a fourth-order near-Hamiltonian system with quartic perturbations. By bifurcation theory, proper perturbations are given to show that the system may have 20, 21 or 23 limit cycles with different distributions. This shows thatH(4) ≥ 20, whereH(n) is the Hilbert number for the second part of Hilbert’s 16th problem. It is well known that H(2) ≥ 4, and it has been recently proved that H(3) ≥ 12. The number of limit cycles obtained in this paper greatly improves the best existing result, H(4) ≥ 15, for fourth-degree polynomial planar systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix

The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...

متن کامل

Bifurcation of limit cycles in 3rd-order Z2 Hamiltonian planar vector fields with 3rd-order perturbations

In this paper, we show that a Z2-equivariant 3rd-order Hamiltonian planar vector fields with 3rd-order symmetric perturbations can have at least 10 limit cycles. The method combines the general perturbation to the vector field and the perturbation to the Hamiltonian function. The Melnikov function is evaluated near the center of vector field, as well as near homoclinic and heteroclinic orbits. ...

متن کامل

Hopf bifurcations for Near-Hamiltonian Systems

In this paper, we consider bifurcation of limit cycles in near-Hamiltonian systems. A new method is developed to study the analytical property of the Melnikov function near the origin for such systems. Based on the new method, a computationally efficient algorithm is established to systematically compute the coefficients of Melnikov function. Moreover, we consider the case that the Hamiltonian ...

متن کامل

Bifurcation of Limit Cycles in a Class of Liénard Systems with a Cusp and Nilpotent Saddle

In this paper the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp and a nilpotent saddle both of order one for a planar near-Hamiltonian system are given. Next, we consider the bifurcation of limit cycles of a class of hyper-elliptic Liénard system with this kind of heteroclinic loop. It is shown that this system can undergo Poincarè bifurcation fr...

متن کامل

Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation

This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007